初中数学三角形全等的判定+性质+辅助线总结

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  全等三角形是初中数学一个重要的知识点,今天分享的是初中数学三角形全等的判定+性质+辅助线知识点总结。




  初中数学三角形全等的判定


  1、SSS(边边边):三边对应相等的三角形是全等三角形。

  2、SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。

  3、ASA(角边角):两角及其夹边对应相等的三角形全等。

  4、AAS(角角边):两角及其一角的对边对应相等的三角形全等。

  5、HL(斜边、直角边):在一对直角三角形中,斜边及另一条直角边相等。

  初中数学三角形全等的性质


  在数学几何中,将经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,全等的两个三角形对应的边和角相等,对应边上的高、角平分线、中线对应相等,全等三角形面积和周长相等。

  初中数学三角形全等的辅助线


  1、遇到等腰三角形,由于等腰三角形“三线合一”的性质,可作底边上的高作为全等三角形的辅助线,将等腰三角形分成两个全等的直角三角形。

  2、如果题意中已知三角形的中线,可以运用倍长中线的方法,使延长线段与原中线长相等,又因为对顶角相等,就已经存在一边一角对应相等的关系了,从而构造全等三角形。

  3、利用角平分线添加辅助线的方法:可以自角平分线上的某一点向角的两边作垂线,根据角平分线到两边距离相等的性质,可以得到两个全等的直角三角形;可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形;可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

  4、截长法与补短法:将某条线段延长,使之与特定线段相等,并连接相关的线段,尝试构建全等三角形。这个方法适用于证明线段的和、差、倍、分等类的题目。

  以上就是初中数学三角形全等的判定+性质+辅助线总结。全等三角形的相关知识点是各位初中生们必须要掌握的内容,不仅经常出现在初中数学考试中,也是我们学习高中数学的基础。

延伸阅读

议论文阅读理解知识点汇总和答题技巧总结

  议论文是一种剖析事物,发表意见的文体。为了帮助大家可以快速读懂议论文,小编将议论文阅读理解知识点汇总和答题技巧总结成下文。  议论文阅读理解知识点  议论文阅读理解相对其他文体来说难度稍高,我们需要掌握以下基础知识点:  1、议论文的三要素:论点、论据、论证。  2、论点是作者对所论述的问题的见解和主张,是作者看法的完整陈述,在形式上应该是完整的句子。  3、论据是指用来证明论点的事实和道理。论据有两种形式:事实论据和道理论据。事实论据包括人们公认的事例、史料、统计数据等;道理论据包括人们公认的原理、公式、定义、法则、规律、名言警句等。  4、论证指的是运用论据证明论点的过程和方法,是沟通论点和论据之间的桥梁。议论文的论证方法有举例论证,引用论证,对比论证,比喻论证,归谬论证,理论论证,因果论证。  议论文阅读理解答题技巧  1、论点可以直接提出,也可以隐含在文中。中心论点的识别方法:一看题目,题目中有谈、论、说、议的一般是论题;二看首尾,首尾的中心句可能是论点;三看是否是明确的判断;四看是否统帅全文;五看论据证明的观点。  2、论据类问题有3个答题要点:明确论据类型;具体分析作用;围绕中心论点补充论据。  3、论证方法类问题的答题要点:论证方法+观点+效果。  举例论证:通过举具体的事例加以论证,从而使论证更具体、更有说服力。  道理论证:通过讲道理的方式证明论点,使论证更概括更深入。  比喻论证:通过比喻进行证明,使论证生动形象、浅显易懂。  对比论证:通过对比突出强调某一观点。  4、开放性题目的答题要点:找准文章的论点;结合全文阐述论点的由来;联系实际,运用合适的论据分析;提出个人的设想或发出号召。  以上就是议论文阅读理解知识点汇总和答题技巧总结。语文考试中如果遇到议论文,不要慌张,运用今天学到的议论文阅读理解知识点和答题技巧就能轻松解决了。

全等三角形辅助线的常见作法有哪些

  如何借助辅助线来构建全等三角形,根据全等三角形的性质推断出对应的边角关系,是解决大部分几何问题的基本思路。那么接下来就跟着小编一起来学习一下全等三角形辅助线的作法吧。  全等三角形的判定定理  全等三角形指两个全等的三角形,它们的三条边及三个角都对应相等。两个三角形是否全等可以根据以下的方法来判定:  1、SSS(边边边):三边对应相等的三角形是全等三角形。  2、SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。  3、ASA(角边角):两角及其夹边对应相等的三角形全等。  4、AAS(角角边):两角及其一角的对边对应相等的三角形全等。  5、HL(斜边、直角边):在一对直角三角形中,斜边及另一条直角边相等。  全等三角形辅助线的作法  1、遇到等腰三角形,由于等腰三角形“三线合一”的性质,可作底边上的高作为全等三角形的辅助线,将等腰三角形分成两个全等的直角三角形。  2、如果题意中已知三角形的中线,可以运用倍长中线的方法,使延长线段与原中线长相等,又因为对顶角相等,就已经存在一边一角对应相等的关系了,从而构造全等三角形。  3、利用角平分线添加辅助线的方法:可以自角平分线上的某一点向角的两边作垂线,根据角平分线到两边距离相等的性质,可以得到两个全等的直角三角形;可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形;可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。  4、截长法与补短法:将某条线段延长,使之与特定线段相等,并连接相关的线段,尝试构建全等三角形。这个方法适用于证明线段的和、差、倍、分等类的题目。  以上就是全等三角形辅助线的作法。遇到求线段长度或角的角度的几何问题,先看题意给出的图形中有没有全等三角形可以利用,如果没有可以考虑用以上的方法来添加全等三角形辅助线,构成全等三角形,从而解决问题。

初中英语八大时态结构及用法详解

  时态可以说是初中英语语法的半壁江山,今天给大家总结了初中英语八大时态结构及用法详解,希望同学们认真学习。  初中英语八大时态结构即用法  初中英语八大时态指英语中的八个基本时态,即:一般现在时、一般过去时、一般将来时、过去将来时、现在进行时、过去进行时、现在完成时、过去完成时。  1、一般现在时:经常、反复发生的动作或行为及现在的某种状况。  基本结构:is/am/are和动词的第三人称单数形式。  否定形式:am/is/are+not;don't或doesn't+行为动词原形。  一般疑问句:is/am/are动词放于句首;若谓语动词为行为动词,用助动词do或does提问,同时还原行为动词。  2、一般过去时:过去某个时间里发生的动作或状态,过去经常性的动作或行为。  基本结构:was/were和行为动词过去式  否定形式:was/were+not;didn't+行为动词原形。  一般疑问句:was或were放于句首;用助动词did提问,同时还原行为动词。  3、现在进行时:表示现阶段或说话时正在进行的动作及行为。  基本结构:am/is/are+doing  否定形式:am/is/are+not+doing  一般疑问句:把am/is/are放于句首。  4、过去进行时:表示过去某段时间或某一时刻正在发生或进行的行为或动作。  基本结构:was/were+doing  否定形式:was/were+not+doing.  一般疑问句:把was或were放于句首。  5、一般将来时:表示将要发生的动作或存在的状态及打算、计划或准备做某事。  基本结构:am/is/are/going to+do;will+do  否定形式:am/is/are+not+going to+do;will not(won't)+do  一般疑问句:am/is/are、will提到句首。  6、过去将来时:立足于过去某一时刻,从过去看将来,常用于宾语从句中。  基本结构:was/were/going to+do;would+do.  否定形式:was/were/not+going to+do;would+not+do.  一般疑问句:was或were、would提到句首。  7、现在完成时:过去发生或已经完成的动作对现在造成的影响或结果,或从过去已经开始,持续到现在并且有可能继续下去的动作或状态。  基本结构:have/has+done  否定形式:have/has+not+done  一般疑问句:have或has提到句首。  8、过去完成时:以过去某个时间为标准,在此以前发生的动作或行为,或在过去某动作之前完成的行为,即“过去的过去”。  基本结构:had+done.  否定形式:had+not+done  一般疑问句:had放于句首。  初中英语八大时态例句  The earth moves around the sun.(一般现在时)  Where did you go just now?(一般过去时)  It's getting warmer and warmer.(现在进行时)  What was she doing at nine o'clock yesterday?(过去进行时)  They will go to visit the factory tomorrow.(一般将来时)  He told me he would go to Beijing.(过去将来时)  I have lived here for more than twenty years.(现在完成时)  He had no sooner bought the car than he sold it.(过去完成时)  初中英语八大时态结构及用法详解已经为大家介绍完毕了。在学习英语语法的过程中初中英语八大时态结构及用法是重点也是难点,不仅要背下来,更重要的是要及时通过练习题来巩固知识点。

旋转构造全等,旋转全等重难点突破

  在数学几何中,如果题目给出的条件不足以推出最后的结论,我们往往要通过构造全等三角形的方法来过渡或转换边角关系。运用旋转构造全等三角形是其中最常见的方式,那么下面小编就来讲讲旋转构造全等的相关知识吧。  旋转构造全等的原理  把一个平面图形绕平面内一点O按顺时针或逆时针旋转一定的角度,得到的图形称为旋转变换,点O叫做旋转中心,旋转的角度叫做旋转角。特别地,旋转角为180°的旋转叫做中心对称。  旋转的性质:旋转前后的图形全等,对应线段相等,对应角相等,对应线段所在直线的夹角中等于旋转角,对应点到旋转中心的距离相等。  中心对称的性质:对应线段平行且相等,对应角相等;连结对应点的线段都经过对称中心,并且被对称中心平分。例如反函数的图像就是中心对称图形,对称中心是坐标轴的原点。  旋转构造全等的方法  旋转变换应用于几何辅助线中常见的有下面三种情况:  1、旋转90°角:当题目条件中有正方形或直角三角形时,常将图形绕直角顶点旋转90°;  2、旋转60°角:当题目条件中有等边三角形时,常将图形绕等边三角形一顶点旋转60°;  3、当题目条件中有等腰三角形时,常将图形绕等腰三角形顶角的顶点旋转顶角的度数。  旋转构造全等的例题  在正方形ABCD中,点E、F分别在AB和BC上,∠EDF=45°。求证:EF=AE+FC  证明:将△ADE绕D点逆时针旋转90°,到△CDE’的位置上  则CE’=AE,DE=DE’,∠ADE=∠CDE’  在正方形ABCD,∠EDF=45°  ∴∠ADE+∠CDF=45°  ∴∠CDE’+∠CDF=45°=∠FDE’  ∴∠EDF=45°=∠FDE’  又∵DE=DE’,∠EDF=∠FDE’,DF=DF(公共边)  ∴EF=E’F=E’C+CF=AE+FC  旋转构造全等在数学考试中通常是与其他的知识点结合在一起综合考察,因此同学们在学习旋转构造全等相关的内容时,也要认真复习图形的相关性质,并在解题中灵活地运用这些知识。

初中数学全等三角形知识梳理

  全等三角形是初中学习阶段学习的一个重要知识点,很多初中生会觉得全等三角形是一个难以理解的概念,为此小编将整理的初中数学全等三角形知识梳理分享给各位同学。  数学全等三角形的概念  在数学几何中,将经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,全等的两个三角形对应的边和角相等,对应边上的高、角平分线、中线对应相等,全等三角形面积和周长相等。  数学全等三角形判定定理  SSS(边边边):三边对应相等的三角形是全等三角形。  SAS(边角边):两边及其夹角对应相等的三角形是全等三角形。  ASA(角边角):两角及其夹边对应相等的三角形全等。  AAS(角角边):两角及其一角的对边对应相等的三角形全等。  HL(斜边、直角边):在一对直角三角形中,斜边及另一条直角边相等。  2020中考数学全等三角形的应用  1、初中中对全等三角形的考查通常是证明两个三角形全等,较为简单会要求直接证明,有时需要做一些辅助线。  2、复杂的几何题会将全等三角形与其他知识点结合起来,运用到全等三角形的性质,即通过证明两个三角形全等,从而得出对应边或对应角相等。因此我们在书写时要一定要把表示对应顶点的字母写在对应的位置上,方便找出对应的边和角。  3、在运用全等三角形判定定理的时候,一定要注意SAS、ASA是两角的夹边和两边的夹角,AAS是两角的对边,如果是直角三角形可以优先考虑用HL来证明。  初中数学全等三角形知识梳理已经为大家整理完毕了。我们要善于灵活选择适当的方法判定两个三角形全等,为了达到这种效果,同学们一定要多做一些习题练习,并从中总结经验和解题思路。
相关推荐

停课不停学,这份初中语文知识点很重要

初中数学三角函数解题技巧