初中数学复习:正多边形和圆练习题

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  正多边形和圆是初中数学重要的知识点之一,也是很多同学经常出错的地方。我们除了能在课堂上获取新知识,,也应该通过练习题来巩固学习。下面小编带来几道正多边形和圆的练习题。




  初中数学易错点:正多边形和圆


  1、正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系;

  2、难点:正多边形半径、中心角、弦心距、边长之间的关系。

  初中数学知识点:正多边形和圆


  1、正多边形是指二维平面内各边相等,各角也相等的多边形。正多边形的外接圆的半径叫做半径;正多边形各边所对的外接圆的圆心角都相等,这个圆心角叫做正多边形的中心角;正多边形的圆心到正多边形某一边的距离叫做边心距。

  2、正多边形和圆的位置关系有两种:外接和内切。任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆,两个圆的圆心叫做正多边形的中心。

  3、正n边形的内角和为(n-2)*180°,外角和为360°。

  初中数学复习:正多边形和圆练习题


  (1)正三角形的边心距、半径和高的比是多少?

  解:在正三角形ABC中,圆心为点O,OD是正三角形的边心距,OA是半径,AD是高。设OD=r,则AO=2r,AD=3r 

  ∴OD∶AO∶AD=r∶2r∶3r=1∶2∶3 

  (2)已知正六边形边长为a,求它的内切圆的面积。

  解:如图所示,设正六边形的边长AB=a,内切圆的圆心为O,连结OA、OB,作OH⊥AB于H,则∠AOH=30°

  ∴OA=2AH=AB=a

  ∴OH²=OA²-AH²=a²-(a/2)²=3a/4即OH=二分之根号三*a

  ∴S=π(OH)²=3πa²/4

  以上两道正多边形和圆练习题可以帮助大家学习和巩固关于正多边形和圆的相关知识点,在学习时通过练习来理解和掌握知识点会更加轻松容易,也是一个不错的学习方法。

延伸阅读

圆的基本性质知识点整理

  在初中数学中,很可能还会出现关于圆的基本性质的相关内容,所以今天小编给大家整理了圆的基本性质,以供参考。    圆的定义    在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆的中心叫圆心,用O表示。连接圆心和圆上的任意一点的线段叫做半径,字母表示为r;通过圆心并且两端都在圆上的线段叫做直径,字母表示为d。在同一个圆中,圆的直径d=2r。    圆的基本性质    1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。    2、顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角定理:相同弧所对的圆周角等于圆心角的一半。    3、圆是轴对称图形,对称轴在过圆心的直线上,圆有无数条对称轴。    4、圆和圆的位置关系:无公共点,一圆在另一圆之外叫外离,在之内叫内含。有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。有两个公共点的叫相交。圆和圆的位置关系由圆心距决定。    圆的计算公式    圆的周长计算公式:C=πd=2πr,半圆的周长C=πr+2r,圆的面积S=πr²。    圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示,    π≈3.1415926535......计算时通常取近似值3.14。    以上就是圆的基本性质。关于圆的题型千变万化,可以与很多知识点综合起来考查,只要掌握圆的基本性质,相信无论题型怎么变化都能从容应对。

凸多边形的概念,凸多边形有什么性质

  凸多边形是一个内部为凸集的简单多边形,是数学几何图形的学习过程中的一个难点,接下来就让小编来跟大家复习一下凸多边形的概念。  凸多边形的概念  如果把一个多边形的所有边中的任意一条边向两方无限延长成为一条直线时,若该多边形的其他各边都在此直线的同侧,那么这个多边形就叫做凸多边形;若该多边形的其他各边不都在此直线的同侧,那么这个多边形就叫做凹多边形。  根据凸多边形的概念,在判断某个多边形是凸多边形还是凹多边形时可以采用角度法、凸包法、顶点凹凸性法以及辛普森面积法。其中角度法比较常见和简单:确认多边形的每个内角是否都小于180度,若全部小于180度则该多边形为凸多边形,若有一个内角大于180度,则该多边形为凹多边形。  凸多边形的性质  根据凸多边形的概念,我们可以推算出凸多边形的以下性质:  1、凸多边形内所有内角小于180度,任意凸多边形外角和均为360°。  2、凸多边形任意两个顶点间的连线一定位于该凸多边形的内部或边上。  3、凸多边形内任意两个点的连线全部在凸多边形内部或边上。  4、所有的正多边形都是凸多边形,所有的三角形都是凸多边形(因为三角形的内角之和为180度)。  5、凸多边形内角中锐角的个数不能多于3个。  以上就是小编整理的关于凸多边形的概念和性质的相关内容。同学们不仅要理解掌握凸多边形的概念及其性质,还有了解它和凹多边形的区别并掌握判断方法。

议论文阅读理解知识点汇总和答题技巧总结

  议论文是一种剖析事物,发表意见的文体。为了帮助大家可以快速读懂议论文,小编将议论文阅读理解知识点汇总和答题技巧总结成下文。  议论文阅读理解知识点  议论文阅读理解相对其他文体来说难度稍高,我们需要掌握以下基础知识点:  1、议论文的三要素:论点、论据、论证。  2、论点是作者对所论述的问题的见解和主张,是作者看法的完整陈述,在形式上应该是完整的句子。  3、论据是指用来证明论点的事实和道理。论据有两种形式:事实论据和道理论据。事实论据包括人们公认的事例、史料、统计数据等;道理论据包括人们公认的原理、公式、定义、法则、规律、名言警句等。  4、论证指的是运用论据证明论点的过程和方法,是沟通论点和论据之间的桥梁。议论文的论证方法有举例论证,引用论证,对比论证,比喻论证,归谬论证,理论论证,因果论证。  议论文阅读理解答题技巧  1、论点可以直接提出,也可以隐含在文中。中心论点的识别方法:一看题目,题目中有谈、论、说、议的一般是论题;二看首尾,首尾的中心句可能是论点;三看是否是明确的判断;四看是否统帅全文;五看论据证明的观点。  2、论据类问题有3个答题要点:明确论据类型;具体分析作用;围绕中心论点补充论据。  3、论证方法类问题的答题要点:论证方法+观点+效果。  举例论证:通过举具体的事例加以论证,从而使论证更具体、更有说服力。  道理论证:通过讲道理的方式证明论点,使论证更概括更深入。  比喻论证:通过比喻进行证明,使论证生动形象、浅显易懂。  对比论证:通过对比突出强调某一观点。  4、开放性题目的答题要点:找准文章的论点;结合全文阐述论点的由来;联系实际,运用合适的论据分析;提出个人的设想或发出号召。  以上就是议论文阅读理解知识点汇总和答题技巧总结。语文考试中如果遇到议论文,不要慌张,运用今天学到的议论文阅读理解知识点和答题技巧就能轻松解决了。

初中几何相似三角形的判定定理与相关性质

  相似三角形是初中几何中重要的证明模型之一,在解决角度问题或求线段长度等问题时可以通过证明两个三角形相似来承接条件和结论,下面小编总结了初中几何相似三角形的判定定理,帮助大家快速掌握这一知识点。  初中几何相似三角形的定义  两个图形的形状完全相同,但图形的大小位置不一定相同,这样的图形叫做相似图形,用符号“∽”来表示。两个图形的相似,其中一个图形可以看作由另一个图形放大或缩小得到的。三角分别相等,三边成比例的两个三角形叫做相似三角形。全等三角形可以看做特殊的相似三角形,这时相似比等于1。  在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。  初中几何相似三角形的性质  1、对应角相等;  2、对应边成比例,且对应边的比叫做相似比;  3、对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;  4、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方。  初中几何相似三角形的判定定理  1、有两角对应相等的两个三角形相似;  2、两边对应成比例,且夹角相等的两个三角形相似;  3、三边对应成比例的两个三角形相似。  4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。  5、直角三角形被斜边上的高分成两个直角三角形和原三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。  上文提到的初中几何相似三角形的判定定理的应用非常广泛,所以要求同学们要尽量熟记所有判定定理。在记忆的时候,要注意将初中几何相似三角形的判定定理与全等三角形的判定定理区分开,千万不要混淆了。

如何正确运用垂径定理,垂径定理的推论及证明

  在关于圆的相关定理中,垂径定理是其中的一个重要的几何定理,而对垂径定理的理解不够透彻将会直接影响几何的解题。那么我们应该如何正确运用垂径定理呢?  如何正确理解垂径定理  垂径定理是初中平面几何圆形中的一个定理,其内容是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。用数学几何语言表达为:∵CD是直径,CD⊥AB,∴AM=BM,弧AC=弧BC,弧AD=弧BD。  如何证明垂径定理  在圆O中,AB是一条非直径的弦,CD为垂直于弦AB的直径,垂足为M。  证明:连接OA、OB,则OA=OB  在Rt△OAM和Rt△OBM中  ∵OA=OB,OM=OM  ∴Rt△OAM≌Rt△OBM(HL)  ∴AM=BM  ∴∠AOC=∠BOC  ∴∠AOD=∠BOD  ∴弧AC=弧BC,弧AD=弧BD  如何正确运用垂径定理  垂径定理揭示了垂直于弦的直径和这条弦以及这条弦所对的两条弧之间的内在关系,它包含了五个基本元素:①过圆心,②垂直弦,③平分弦,④平分优弧,⑤平分劣弧,在上述5个元素中任意两个组成题设,都能推出其他的三个结论。但值得注意的是所有的直径都会互相平分,但不一定会垂直。所以当①过圆心与③平分弦组成题设时,被平分的弦不能是直径。这个也是考试中经常会有陷阱的地方,同学们一定要记得,必须强调这条弦不能是直径。  如何正确运用垂径定理对解决几何题有着重要的意义,运用垂径定理及其推论解决一些数学问题,最常见的辅助线是连接圆上的点与圆心构成半径,及过圆心作弦的垂线,构造直角三角形,利用勾股定理解决问题。
相关推荐

解方程顺口溜及重点公式是什么

初中数学复习:圆与三角形的关系练习题