初一数学三角形经典例题专题训练

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  三角形是初一数学最重要的考点之一,本文收集了初一数学三角形的经典例题,从多种题型考查了三角形的知识点,帮助同学们复习巩固。下面就跟着小编一起来进行初一数学三角形经典例题专题训练。




  初一数学三角形经典例题一


  已知:AB、CD相交于点O,AC∥DB,OC=OD,E、F为AB上两点,且AE=BF。求证:CE=DF

  证明:∵AC∥DB

  ∴∠ACO=∠BDO,∠CAE=∠DBF

  又∵OC=OD,∠AOC=∠BOD(对顶角相等),∠ACO=∠BDO

  ∴△AOC≌△BOD(ASA)

  ∴AC=DB

  又∵∠CAE=∠DBF,AE=BF

  ∴△ACE≌△BDF

  ∴CE=DF

  初一数学三角形经典例题二


  已知:OE平分∠AOB,EC⊥OA于C,ED⊥OB于D。求证:(1)OC=OD;(2)连接CD,OE垂直平分CD。

  证明:(1)由题意可知∠ECO=∠EDO=90°

  ∵OE平分∠AOB

  ∴∠COE=∠DOE

  又OE=OE(公共边)

  ∴△COE≌△DOE(AAS)

  ∴OC=OD

  (2)由(1)可知OC=OD

  ∴△OCD是等腰三角形

  ∵OE平分∠AOB

  ∴OE垂直平分CD(等腰三角形三线合一性质)

  初一数学三角形选择题专题训练


  1、下列哪组线段可以围成三角形( B ) 

  A、1,2,3  B、3,4,5  C、2,8,5  D、3,3,7

  2、( A )把一个三角形分成两个面积相等的三角形。

  A、中线   B、高线   C、边的中垂线   D、角平分线

  以上就是小编收集的初一数学三角形经典例题专题训练,在完成训练的过程中,要不断总结解题思路和方法,如果出现错误,要分析错误的原因,确保自己不会再犯。善于学习的同学会将初一数学三角形经典例题专题训练转化为自己学习的储备资源,不断提升自己解决问题的能力。

延伸阅读

三角形边长计算公式是什么

  三角形是一种在日常生活以及学习过程中经常会遇到的一种几何图形,相信同学们对它都不会陌生。下面我们要学习的就是三角形边长计算公式。    三角形边长计算公式    在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦。几何语言:在△ABC中,a²=b²+c²-2bc×cosA;此定理可以变形为:cosA=(b²+c²-a²)/2bc。同理可得:cosB=(a^2+c^2-b^2)/2ac; cosC=(a^2+b^2-c^2)/2ab    特殊三角形边长计算公式    特殊的三角形包括:直角三角形、等边三角形、等腰三角形等。    1、解直角三角形的理论依据是勾股定理和三角函数公式:如果是已知边长求边长,则一般选择勾股定理;利用三角函数可以求出对应的边长和角度。    2、对等边三角形和等腰三角形而言,边长和角度大小具有一定的规律,可以帮助我们快速解决问题。    三角形边长的关系    对任何一个三角形来说,都有:三角形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表示为:a+b>c, a+c>b, b+c>a;|a-b|<c ,|a-c|<b, |b-c|<a。确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即|a-b|<c<a+b。在计算题中,这一规律可以帮助我们检验上述公式得出的结果是否是正确的。    以上就是三角形边长计算公式。小编总结的这些三角形边长计算公式是解决几何证明题和几何计算题的重点,希望同学们一定要认真掌握起来,同时也建议大家多做一些专项练习题来巩固理解。

初中几何相似三角形的判定定理与相关性质

  相似三角形是初中几何中重要的证明模型之一,在解决角度问题或求线段长度等问题时可以通过证明两个三角形相似来承接条件和结论,下面小编总结了初中几何相似三角形的判定定理,帮助大家快速掌握这一知识点。  初中几何相似三角形的定义  两个图形的形状完全相同,但图形的大小位置不一定相同,这样的图形叫做相似图形,用符号“∽”来表示。两个图形的相似,其中一个图形可以看作由另一个图形放大或缩小得到的。三角分别相等,三边成比例的两个三角形叫做相似三角形。全等三角形可以看做特殊的相似三角形,这时相似比等于1。  在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。  初中几何相似三角形的性质  1、对应角相等;  2、对应边成比例,且对应边的比叫做相似比;  3、对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;  4、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方。  初中几何相似三角形的判定定理  1、有两角对应相等的两个三角形相似;  2、两边对应成比例,且夹角相等的两个三角形相似;  3、三边对应成比例的两个三角形相似。  4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。  5、直角三角形被斜边上的高分成两个直角三角形和原三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。  上文提到的初中几何相似三角形的判定定理的应用非常广泛,所以要求同学们要尽量熟记所有判定定理。在记忆的时候,要注意将初中几何相似三角形的判定定理与全等三角形的判定定理区分开,千万不要混淆了。

初中几何“相交线、平行线”知识点精讲

  点、线、面是初中几何的主要学习内容,也构成了这个错综复杂的世界,相交线和平行线是学习初中几何图形以及解析几何的基础,那么接下来小编将与大家分享初中几何“相交线、平行线”的性质。  初中几何相交线、平行线的定义  在同一平面内,两条直线的位置关系有相交和平行两种。只有一个公共点的两条直线叫做相交线,永远没有交点的两条直线叫做平行线。  初中几何相交线的性质  1、邻补角:在两条相交的直线中其中一条直线的一侧,并且有一条公共边,具有这种关系的两个角,互为邻补角。互为邻补角的两个角互补。  2、对顶角:有一个公共顶点,并且其中一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。互为对顶角的两个角相等。  3、对顶角和邻补角是成对出现的。  4、两条直线相交所成的四个角中,有一个角为90°时,称这两条直线互相垂直。垂直线是特殊的相交线,该交点也叫做垂足。  初中几何平行线的性质  1、两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。  2、平行线公理:经过直线外一点,有且只有一条直线与已知直线平行。  3、平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线平行于第三条直线时,两条直线平行;在同一平面内,平行或垂直于同一直线的两条直线互相平行。  初中几何中的相交线、平行线及其相关性质是初中学习的重点内容,因此同学们要将上文提及的全部知识点熟记并学会灵活运用到实际解题中,值得注意的是千万不要相交线和平行线所围成的角的名称记错了。

三角形的定义是什么

  三角形是一种在日常生活以及学习过程中经常会遇到的一种几何图形,相信同学们对它都不会陌生,而今天我们要学习如何给三角形下定义。    三角形的定义    由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。平面上三条直线或球面上三条弧线所围成的图形,其中三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。在小学和中学学习阶段,我们所说的三角形一般是指平面三角形。    三角形的分类    按角的角度可以分成:    1、锐角三角形:三个内角都小于90度。    2、直角三角形:三个内角中一个角等于90度。    3、钝角三角形:三个内角中有一个角大于90度。    按边的长度关系可以分成:    1、不等边三角形:三条边都不相等。    2、等腰三角形:两边相等的三角形,相等的两个边称为这个三角形的腰。    3、等边三角形,又称正三角形:三边相等的三角形。    三角形的基本性质    1、在平面上三角形的内角和等于180°(内角和定理)。    2、在平面上三角形的外角和等于360° (外角和定理)。    3、在平面上三角形的外角等于与其不相邻的两个内角之和。    4、一个三角形的三个内角中最少有两个锐角。    6、三角形任意两边之和大于第三边,任意两边之差小于第三边。    7、在同一个三角形内,大边对大角,大角对大边。    8、三角形具有稳定性,不易变形。    上文中我们学习了三角形的定义是什么,三角形是几何图案的基本图形,在后面的几何学习中至关重要,因此同学们一定要理解三角形的定义并掌握三角形的基本性质。

学好初中几何的关键,有哪些学好几何的秘诀

  几何是数学最关键一类题目,甚至有人认为只要做好了几何题,数学的成绩一定不会太低。那么学好初中几何的关键是什么呢?为此而困扰的同学们不妨往下看看有哪些学好初中几何的秘诀。  学好初中几何的秘决  1、概念。能否正确地理解概念是学好初中几何的前提与基础,由文字描述想象出实际的平面几何图形,在此基础上才能研究其性质。刚刚开始接触几何时,可以借助于教具、模型、实物、图形等具体事物,先建立直观的认知基础,由简单图形的学习中组部进入复杂图形、组合图形的进阶学习,慢慢提高几何学习能力。  2、几何语言。几何语言的表现形式有三种:图形语言、文字语言以及符号语言,这三种语言在几何中的地位是同步的,同学们要熟练地运用每一种语言,并能互相转化,用严谨、准确的语言来作答。  3、画图。这其实是几何学习最基础的一环,但往往被学生们忽略。几何图形是几何学研究的主要对象,画准图形是解题的关键。不仅仅要会看图,在解决没有提供相应图形的题目时,画出正确符合题意的图形对解题大有帮助。  学好初中几何的关键  数学是对推理证明能力要求比较高的学科,特别是几何这种逻辑性更高的数学版块。学习初中几何知识需要严谨的逻辑,因为初中几何的难度在于推理证明题,因此培养和发展初中生的逻辑思维能力是学好初中几何的重要前提。初中生几何逻辑思维的培养是学好初中几何的关键,在证明或计算过程中,常常需要利用图形加深概念的认识和理解,通过图形来分析题意,解决问题,用这样图文结合的方式来提高初中生几何学习能力。小编不提倡“题海战术”,但也要力求涉及尽可能多的题型,只要接触过类似的题型,拿到其他题的时候就能够快速反应出其解题思路,但要想了解各个题型是需要大量的练习以及不断的总结和反思的。  相信看完本文的同学都了解了学好初中几何的关键所在。毋庸置疑,学好初中几何是很花费时间的,因此在复习的过程中要多花点精力与时间,尽量选择整块的时间解决数学问题,否则思路被打断,效率会变低。
相关推荐

初中数学知识点例题讲解:相交线与平行线

初中几何的符号语言,几何符号如何使用