初中几何直角三角形概述,解直角三角形

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质。而考试最喜欢出题考查这一特殊性质,因此小编总结了初中几何直角三角形的相关知识,以供大家学习参考。




  初中几何直角三角形的定义


  有一个角为90°的三角形,叫做直角三角形,写作Rt△。两条直角边相等的直角三角形叫做等腰直角三角形。

  初中几何直角三角形的性质


  1、在直角三角形中,斜边上的中线等于斜边的一半。

  2、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。(通过三角形的面积计算方法进行转换)。

  3、在Rt△ABC中,∠A=90°,AD是斜边BC上的高,D为垂足,则有射影定理如下:

  (AD)²=BD·DC;(AB)²=BD·BC;(AC)²=CD·BC。

  4、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  5、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。若要证明两个直角三角形全等,只需证明一条直角边和斜边对应相等即可。

  6、在直角三角形中,两个锐角互余。

  直角三角形中的勾股定理


  在直角三角形ABC中,满足AB²+AC²=BC²,这一等式叫做勾股定理。勾股定理也可以用作直角三角形的判定定理:如果一个三角形的三条边满足两直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。

  本文介绍了初中几何直角三角形的相关内容,对待这样的特殊的几何图形来说,虽然在考试中较为常见,但只要掌握了其特殊的性质和判定定理,难度一般都不会太大的。大家如果对初中几何直角三角形已经了解透彻了的话,赶紧打开练习册做一些专题训练吧。

延伸阅读

初中几何相似三角形的判定定理与相关性质

  相似三角形是初中几何中重要的证明模型之一,在解决角度问题或求线段长度等问题时可以通过证明两个三角形相似来承接条件和结论,下面小编总结了初中几何相似三角形的判定定理,帮助大家快速掌握这一知识点。  初中几何相似三角形的定义  两个图形的形状完全相同,但图形的大小位置不一定相同,这样的图形叫做相似图形,用符号“∽”来表示。两个图形的相似,其中一个图形可以看作由另一个图形放大或缩小得到的。三角分别相等,三边成比例的两个三角形叫做相似三角形。全等三角形可以看做特殊的相似三角形,这时相似比等于1。  在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。  初中几何相似三角形的性质  1、对应角相等;  2、对应边成比例,且对应边的比叫做相似比;  3、对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;  4、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方。  初中几何相似三角形的判定定理  1、有两角对应相等的两个三角形相似;  2、两边对应成比例,且夹角相等的两个三角形相似;  3、三边对应成比例的两个三角形相似。  4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。  5、直角三角形被斜边上的高分成两个直角三角形和原三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。  上文提到的初中几何相似三角形的判定定理的应用非常广泛,所以要求同学们要尽量熟记所有判定定理。在记忆的时候,要注意将初中几何相似三角形的判定定理与全等三角形的判定定理区分开,千万不要混淆了。

三角形边长计算公式是什么

  三角形是一种在日常生活以及学习过程中经常会遇到的一种几何图形,相信同学们对它都不会陌生。下面我们要学习的就是三角形边长计算公式。    三角形边长计算公式    在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦。几何语言:在△ABC中,a²=b²+c²-2bc×cosA;此定理可以变形为:cosA=(b²+c²-a²)/2bc。同理可得:cosB=(a^2+c^2-b^2)/2ac; cosC=(a^2+b^2-c^2)/2ab    特殊三角形边长计算公式    特殊的三角形包括:直角三角形、等边三角形、等腰三角形等。    1、解直角三角形的理论依据是勾股定理和三角函数公式:如果是已知边长求边长,则一般选择勾股定理;利用三角函数可以求出对应的边长和角度。    2、对等边三角形和等腰三角形而言,边长和角度大小具有一定的规律,可以帮助我们快速解决问题。    三角形边长的关系    对任何一个三角形来说,都有:三角形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表示为:a+b>c, a+c>b, b+c>a;|a-b|<c ,|a-c|<b, |b-c|<a。确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即|a-b|<c<a+b。在计算题中,这一规律可以帮助我们检验上述公式得出的结果是否是正确的。    以上就是三角形边长计算公式。小编总结的这些三角形边长计算公式是解决几何证明题和几何计算题的重点,希望同学们一定要认真掌握起来,同时也建议大家多做一些专项练习题来巩固理解。

议论文阅读理解知识点汇总和答题技巧总结

  议论文是一种剖析事物,发表意见的文体。为了帮助大家可以快速读懂议论文,小编将议论文阅读理解知识点汇总和答题技巧总结成下文。  议论文阅读理解知识点  议论文阅读理解相对其他文体来说难度稍高,我们需要掌握以下基础知识点:  1、议论文的三要素:论点、论据、论证。  2、论点是作者对所论述的问题的见解和主张,是作者看法的完整陈述,在形式上应该是完整的句子。  3、论据是指用来证明论点的事实和道理。论据有两种形式:事实论据和道理论据。事实论据包括人们公认的事例、史料、统计数据等;道理论据包括人们公认的原理、公式、定义、法则、规律、名言警句等。  4、论证指的是运用论据证明论点的过程和方法,是沟通论点和论据之间的桥梁。议论文的论证方法有举例论证,引用论证,对比论证,比喻论证,归谬论证,理论论证,因果论证。  议论文阅读理解答题技巧  1、论点可以直接提出,也可以隐含在文中。中心论点的识别方法:一看题目,题目中有谈、论、说、议的一般是论题;二看首尾,首尾的中心句可能是论点;三看是否是明确的判断;四看是否统帅全文;五看论据证明的观点。  2、论据类问题有3个答题要点:明确论据类型;具体分析作用;围绕中心论点补充论据。  3、论证方法类问题的答题要点:论证方法+观点+效果。  举例论证:通过举具体的事例加以论证,从而使论证更具体、更有说服力。  道理论证:通过讲道理的方式证明论点,使论证更概括更深入。  比喻论证:通过比喻进行证明,使论证生动形象、浅显易懂。  对比论证:通过对比突出强调某一观点。  4、开放性题目的答题要点:找准文章的论点;结合全文阐述论点的由来;联系实际,运用合适的论据分析;提出个人的设想或发出号召。  以上就是议论文阅读理解知识点汇总和答题技巧总结。语文考试中如果遇到议论文,不要慌张,运用今天学到的议论文阅读理解知识点和答题技巧就能轻松解决了。

初中英语八大时态结构及用法详解

  时态可以说是初中英语语法的半壁江山,今天给大家总结了初中英语八大时态结构及用法详解,希望同学们认真学习。  初中英语八大时态结构即用法  初中英语八大时态指英语中的八个基本时态,即:一般现在时、一般过去时、一般将来时、过去将来时、现在进行时、过去进行时、现在完成时、过去完成时。  1、一般现在时:经常、反复发生的动作或行为及现在的某种状况。  基本结构:is/am/are和动词的第三人称单数形式。  否定形式:am/is/are+not;don't或doesn't+行为动词原形。  一般疑问句:is/am/are动词放于句首;若谓语动词为行为动词,用助动词do或does提问,同时还原行为动词。  2、一般过去时:过去某个时间里发生的动作或状态,过去经常性的动作或行为。  基本结构:was/were和行为动词过去式  否定形式:was/were+not;didn't+行为动词原形。  一般疑问句:was或were放于句首;用助动词did提问,同时还原行为动词。  3、现在进行时:表示现阶段或说话时正在进行的动作及行为。  基本结构:am/is/are+doing  否定形式:am/is/are+not+doing  一般疑问句:把am/is/are放于句首。  4、过去进行时:表示过去某段时间或某一时刻正在发生或进行的行为或动作。  基本结构:was/were+doing  否定形式:was/were+not+doing.  一般疑问句:把was或were放于句首。  5、一般将来时:表示将要发生的动作或存在的状态及打算、计划或准备做某事。  基本结构:am/is/are/going to+do;will+do  否定形式:am/is/are+not+going to+do;will not(won't)+do  一般疑问句:am/is/are、will提到句首。  6、过去将来时:立足于过去某一时刻,从过去看将来,常用于宾语从句中。  基本结构:was/were/going to+do;would+do.  否定形式:was/were/not+going to+do;would+not+do.  一般疑问句:was或were、would提到句首。  7、现在完成时:过去发生或已经完成的动作对现在造成的影响或结果,或从过去已经开始,持续到现在并且有可能继续下去的动作或状态。  基本结构:have/has+done  否定形式:have/has+not+done  一般疑问句:have或has提到句首。  8、过去完成时:以过去某个时间为标准,在此以前发生的动作或行为,或在过去某动作之前完成的行为,即“过去的过去”。  基本结构:had+done.  否定形式:had+not+done  一般疑问句:had放于句首。  初中英语八大时态例句  The earth moves around the sun.(一般现在时)  Where did you go just now?(一般过去时)  It's getting warmer and warmer.(现在进行时)  What was she doing at nine o'clock yesterday?(过去进行时)  They will go to visit the factory tomorrow.(一般将来时)  He told me he would go to Beijing.(过去将来时)  I have lived here for more than twenty years.(现在完成时)  He had no sooner bought the car than he sold it.(过去完成时)  初中英语八大时态结构及用法详解已经为大家介绍完毕了。在学习英语语法的过程中初中英语八大时态结构及用法是重点也是难点,不仅要背下来,更重要的是要及时通过练习题来巩固知识点。

初中几何“相交线、平行线”知识点精讲

  点、线、面是初中几何的主要学习内容,也构成了这个错综复杂的世界,相交线和平行线是学习初中几何图形以及解析几何的基础,那么接下来小编将与大家分享初中几何“相交线、平行线”的性质。  初中几何相交线、平行线的定义  在同一平面内,两条直线的位置关系有相交和平行两种。只有一个公共点的两条直线叫做相交线,永远没有交点的两条直线叫做平行线。  初中几何相交线的性质  1、邻补角:在两条相交的直线中其中一条直线的一侧,并且有一条公共边,具有这种关系的两个角,互为邻补角。互为邻补角的两个角互补。  2、对顶角:有一个公共顶点,并且其中一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。互为对顶角的两个角相等。  3、对顶角和邻补角是成对出现的。  4、两条直线相交所成的四个角中,有一个角为90°时,称这两条直线互相垂直。垂直线是特殊的相交线,该交点也叫做垂足。  初中几何平行线的性质  1、两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。  2、平行线公理:经过直线外一点,有且只有一条直线与已知直线平行。  3、平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线平行于第三条直线时,两条直线平行;在同一平面内,平行或垂直于同一直线的两条直线互相平行。  初中几何中的相交线、平行线及其相关性质是初中学习的重点内容,因此同学们要将上文提及的全部知识点熟记并学会灵活运用到实际解题中,值得注意的是千万不要相交线和平行线所围成的角的名称记错了。
相关推荐

初中几何中空间与图形基础知识归纳

等腰三角形中线做辅助线,等腰三角形三线合一