相似三角形的性质及其判定定理是什么

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  在解决几何难题时,可以利用相似三角形的性质来转移边角关系,沟通已知条件与结论。因此掌握相似三角形的性质非常重要,下面是小编总结的相似三角形的性质及其判定定理,为大家解题提供帮助。




  相似三角形的概念


  如果两个三角形的三个角分别相等,三条边对应成比例,那么这两个三角形叫做相似三角形。其中,对应线段的比叫做相似比。

  相似三角形的性质


  1、相似三角形的对应角相等

  2、相似三角形对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;

  3、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方;

  4、相似三角形具有传递性:如果两个三角形分别于同一个三角形相似,那么这两个三角形也相似。

  5、相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方。

  6、全等三角形可以看做相似比为1的特殊的相似三角形,凡是全等的三角形都相似。

  相似三角形的判定定理


  1、有两角对应相等;两边对应成比例,且夹角相等;三边对应成比例。

  2、所有等腰直角三角形相似,所有的等边三角形都相似。

  3、一条直角边与斜边成比例的两个直角三角形相似。

  4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。

  5、三边对应平行的两个三角形相似。

  以上就是相似三角形的性质,建议大家要在充分理解的基础上进行记忆,并通过练习题来加强巩固。在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论,并用符号“∽”表示。

延伸阅读

三角形边长计算公式是什么

  三角形是一种在日常生活以及学习过程中经常会遇到的一种几何图形,相信同学们对它都不会陌生。下面我们要学习的就是三角形边长计算公式。    三角形边长计算公式    在任何一个三角形中,任意一边的平方等于另外两边的平方和减去这两边的2倍乘以它们夹角的余弦。几何语言:在△ABC中,a²=b²+c²-2bc×cosA;此定理可以变形为:cosA=(b²+c²-a²)/2bc。同理可得:cosB=(a^2+c^2-b^2)/2ac; cosC=(a^2+b^2-c^2)/2ab    特殊三角形边长计算公式    特殊的三角形包括:直角三角形、等边三角形、等腰三角形等。    1、解直角三角形的理论依据是勾股定理和三角函数公式:如果是已知边长求边长,则一般选择勾股定理;利用三角函数可以求出对应的边长和角度。    2、对等边三角形和等腰三角形而言,边长和角度大小具有一定的规律,可以帮助我们快速解决问题。    三角形边长的关系    对任何一个三角形来说,都有:三角形任意两边之和大于第三边,任意两边之差小于第三边。用字母可表示为:a+b>c, a+c>b, b+c>a;|a-b|<c ,|a-c|<b, |b-c|<a。确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即|a-b|<c<a+b。在计算题中,这一规律可以帮助我们检验上述公式得出的结果是否是正确的。    以上就是三角形边长计算公式。小编总结的这些三角形边长计算公式是解决几何证明题和几何计算题的重点,希望同学们一定要认真掌握起来,同时也建议大家多做一些专项练习题来巩固理解。

初中几何相似三角形的判定定理与相关性质

  相似三角形是初中几何中重要的证明模型之一,在解决角度问题或求线段长度等问题时可以通过证明两个三角形相似来承接条件和结论,下面小编总结了初中几何相似三角形的判定定理,帮助大家快速掌握这一知识点。  初中几何相似三角形的定义  两个图形的形状完全相同,但图形的大小位置不一定相同,这样的图形叫做相似图形,用符号“∽”来表示。两个图形的相似,其中一个图形可以看作由另一个图形放大或缩小得到的。三角分别相等,三边成比例的两个三角形叫做相似三角形。全等三角形可以看做特殊的相似三角形,这时相似比等于1。  在书写过程中,证明两个三角形相似,与证明两个三角形全等一样,应把表示对应顶点的字母写在对应的位置上,方便得出下一步结论。  初中几何相似三角形的性质  1、对应角相等;  2、对应边成比例,且对应边的比叫做相似比;  3、对应边的比、对应高的比、对应中线的比与对应角平分线的比都等于相似比;  4、相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方。  初中几何相似三角形的判定定理  1、有两角对应相等的两个三角形相似;  2、两边对应成比例,且夹角相等的两个三角形相似;  3、三边对应成比例的两个三角形相似。  4、平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。  5、直角三角形被斜边上的高分成两个直角三角形和原三角形相似;如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。  上文提到的初中几何相似三角形的判定定理的应用非常广泛,所以要求同学们要尽量熟记所有判定定理。在记忆的时候,要注意将初中几何相似三角形的判定定理与全等三角形的判定定理区分开,千万不要混淆了。

三角形的定义是什么

  三角形是一种在日常生活以及学习过程中经常会遇到的一种几何图形,相信同学们对它都不会陌生,而今天我们要学习如何给三角形下定义。    三角形的定义    由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。平面上三条直线或球面上三条弧线所围成的图形,其中三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。在小学和中学学习阶段,我们所说的三角形一般是指平面三角形。    三角形的分类    按角的角度可以分成:    1、锐角三角形:三个内角都小于90度。    2、直角三角形:三个内角中一个角等于90度。    3、钝角三角形:三个内角中有一个角大于90度。    按边的长度关系可以分成:    1、不等边三角形:三条边都不相等。    2、等腰三角形:两边相等的三角形,相等的两个边称为这个三角形的腰。    3、等边三角形,又称正三角形:三边相等的三角形。    三角形的基本性质    1、在平面上三角形的内角和等于180°(内角和定理)。    2、在平面上三角形的外角和等于360° (外角和定理)。    3、在平面上三角形的外角等于与其不相邻的两个内角之和。    4、一个三角形的三个内角中最少有两个锐角。    6、三角形任意两边之和大于第三边,任意两边之差小于第三边。    7、在同一个三角形内,大边对大角,大角对大边。    8、三角形具有稳定性,不易变形。    上文中我们学习了三角形的定义是什么,三角形是几何图案的基本图形,在后面的几何学习中至关重要,因此同学们一定要理解三角形的定义并掌握三角形的基本性质。

相似三角形的判定和判定方法归纳

  构建数学几何模型解决几何难题是常用的解题思路,而相似三角形的判定和判定方法是构建数学几何模型的基础和途径,那么你知道哪些相似三角形的判定和判定方法呢?对这一知识点掌握还不够熟悉的同学就接着往下看吧。  相似三角形的判定  1、两个三角形的两个角对应相等;  2、两边对应成比例,且夹角相等;  3、三边对应成比例  4、平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。  相似直角三角形的判定方法  1、斜边与一条直角边对应成比例的两直角三角形相似;  2、直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似;  3、其中一个锐角对应相等的两个直角三角形相似;  4、两直角边对应成比例或斜边和一直角边对应成比例的两个直角三角形相似。  相似三角形的判定定理推论  1、顶角或底角相等的两个等腰三角形相似。  2、所有等边三角形相似。  3、如果两个三角形的两边和第三边上的中线都对应成比例,那么这两个三角形相似。  以上就是相似三角形的判定和判定方法,同学们一定要准确理解并灵活运用。完成相似三角形的判定后,在表示两个三角形相似时,应把表示对应顶点的字母写在对应的位置上,便于找出相似三角形的对应角和对应边。

等腰直角三角形求斜边的方法有多少种

  等腰直角三角形是一种特殊的三角形,所以也经常在考试中出现,那么你知道等腰直角三角形求斜边的方法有哪些吗?想知道更多关于等腰直角三角形的相关知识,就接着往下看吧。  等腰直角三角形的性质  等腰直角三角形是指两直角边相等,两个锐角相等的直角三角形。等腰直角三角形具有所有三角形的共同特征,同时两腰相等,两底角等于45°,等腰直角三角形三边比例为1:1:根号二。  等腰直角三角形求斜边的方法  1、方法一:利用勾股定理。  在等腰直角三角形ABC中,角C为90度,角A=角B=45°,a=b,根据勾股定理c=根号内(a²+b²)=根号内(2a²)=a*根号二=b*根号二。  2、方法二:利用等腰三角形三线合一定理  在等腰直角三角形ABC中,角C为90度,角A=角B=45°,a=b,作c边上的高d,根据等腰三角形斜边上中线角平分线垂线三线合一,c=ab/d=a²/(c/2)=2a²/c,化简可得c=a*根号二=b*根号二。  3、方法三:利用三角函数  c=a/sin45°=b/cos45°=a*根号二=b*根号二。  等腰直角三角形的判定方法  1、有一个角是直角的等腰三角形,或两条边相等的直角三角形是等腰直角三角形。  2、三边比例为1:1:√2的三角形是等腰直角三角形  3、底角为45°的等腰三角形是等腰直角三角形。  4、有一个锐角是45°的直角三角形是等腰直角三角形。  以上就是小编总结的等腰直角三角形求斜边的方法,考试中对特殊图形的考查还是比较多的,因此在平时的学习过程中要格外重视像等腰直角三角形这样的特殊图形,可以帮助我们考出更理想的成绩。
相关推荐

通过延长腰做辅助线,常见辅助线的作法

相似三角形的特例:全等三角形,两者有什么区别