三角函数和反三角函数的图像及性质

作者:陈泽婉
文章来源:星火网校
最新编辑时间:

  三角函数和反三角函数是一对相对应的基本初等函数,研究他们的图像对解决问题的用处很大,那么接下来就让我们一起学习一下三角函数和反三角函数的图像及性质吧。




  三角函数图像及性质


  三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数,初中阶段常见的三角函数包括正弦函数、余弦函数和正切函数。三角函数的图像是在坐标轴上无限延伸而有规律循环的图像,并且都是对称的。

  正弦函数(y=sinx)的图像对称轴为:x=kπ+π/2(k∈Z),对称中心为:(kπ,0)(k∈Z)

  余弦函数(y=cosx)的图像对称轴为:x=kπ(k∈Z),对称中心为:(kπ+π/2,0)(k∈Z)

  正切函数(y=tanx)的图像无对称轴,对称中心为:kπ/2+π/2,0)(k∈Z)

  反三角函数图像及性质


  由于三角函数的图像具有周期性,所以反三角函数是多值函数,为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值有且只有一个确定的x值与之对应。

  反正弦函数(arcsinx):正弦函数y=sinx在[-π/2,π/2]上的反函数,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

  反余弦函数(arccosx):余弦函数y=cosx在[0,π]上的反函数,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1],值域[0,π]。

  反正切函数(arctanx):正切函数y=tanx在(-π/2,π/2)上的反函数,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

  三角函数和反三角函数的图像及性质是数学考试经常考到的知识点,为了方便大家复习,小编整理了以上内容。要想三角函数以及反三角函数图像及性质,作图练习是最行之有效的学习方法。

延伸阅读

初中三角函数边角关系公式,解三角形解题技巧

  根据边角关系解三角形是中考数学中对三角函数相关知识考查的主要题型之一,解决这样的问题,同学们需要熟练掌握初中三角函数边角关系公式。这篇文章将为大家介绍几种三角函数边角关系公式。  锐角三角函数边角关系公式  在直角三角形中,对∠α而言,有对边a、邻边b和斜边c,则有:  正弦公式:sinα=∠α的对边/斜边=a/c;  余弦公式:cosα=∠α的邻边/斜边=b/c;  正切公式:tanα=∠α的对边/∠α的邻边=a/b;  余切公式:cotα=∠α的邻边/∠α的对边=b/a。  初中三角函数边角关系公式  在直角坐标系中,点A的坐标为(x,y),点A到原点的线段长为r,线段r和横坐标的夹角为α,则有三角函数的边角关系公式为:  sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y。  三角函数边角关系公式的运用  解三角形类问题的解题技巧,是利用三角函数边角关系公式,根据已知项求取未知项。各边的关系如下:  正弦:sinA=对边A/斜边C,对边A=斜边C*sinA,对边A=邻边B*tanA;  余弦:cosA=邻边B/斜边C,邻边B=斜边C*cosA,邻边B=对边A/tanA;  正切:tanA=对边A/邻边B,斜边C=对边A/sinA,斜边C=邻边B/cosA。  初中三角函数边角关系公式是三角函数最基本的公式,理解这一知识点需要同学们有一定的平面几何基础,为了更好地理解和掌握三角函数边角关系公式,可以通过画图的方法来辅助学习。

反三角函数公式转化为三角函数应该怎么做

  我们都知道反三角函数即三角函数的反函数,也就是说反三角函数公式和三角函数是可以互相转化的,那么你知道反三角函数公式转化为三角函数应该怎么做吗?  反三角函数的定义  反三角函数指三角函数的反函数,用“arc+函数名”的形式来表示,包括反正弦函数(arcsinx)、反余弦函数(arccosx)、反正切函数(arctanx)。由于三角函数具有周期性,所以反三角函数是多值函数,为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值有且只有一个确定的x值与之对应。反三角函数可以根据反函数的性质转化成三角函数,方便理解。  反三角函数公式总结  1、余角关系公式  arcsin(x)+arccos(x)=π/2  arctan(x)+arccot(x)=π/2  arcsec(x)+arccsc(x)=π/2  2、负数关系公式  arcsin(-x)=-arcsin(x)  arccos(-x)=π-arccos(x)  arctan(-x)=-arctan(x)  arccot(-x)=π-arccot(x)  arcsec(-x)=π-arcsec(x)  arcsec(-x)=-arcsec(x)  3、倒数关系公式  arcsin(1/x)=arccsc(x)  arccos(1/x)=arcsec(x)  arctan(1/x)=arccot(x)=π/2-arctan(x),(x>0)  arccot(1/x)=arccot(x)=π/2-arccot(x),(x>0)  arccot(1/x)=arctan(x)+π=3π/2-arccot(x),(x<0)  arcsec(1/x)=arccos(x)  arccsc(1/x)=arcsin(x)  反三角函数公式转化为三角函数  1、正弦:sin(arcsinx)=x,sin(arccosx)=√(1-x²),sin(arctanx)=x/√(1-x²)  2、余弦:cos(arcsinx)=√(1-x²),cos(arccosx)=x,cos(arctanx)=1/√(1-x²)  3、正切:tan(arcsinx)=x/√(1-x²),tan(arccosx)=√(1-x²)/x,tan(arctanx)=x  以上就是反三角函数公式转化为三角函数的公式。反三角函数是一个重要的知识点,但比较难以理解,反三角函数公式转化为三角函数后就方便理解多了。 <!-- /* Font Definitions */ @font-face {font-family:"Cambria Math"; panose-1:2 4 5 3 5 4 6 3 2 4; mso-font-charset:0; mso-generic-font-family:roman; mso-font-pitch:variable; mso-font-signature:3 0 0 0 1 0;} @font-face {font-family:等线; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-alt:DengXian; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:-1610612033 953122042 22 0 262159 0;} @font-face {font-family:"\@等线"; panose-1:2 1 6 0 3 1 1 1 1 1; mso-font-charset:134; mso-generic-font-family:auto; mso-font-pitch:variable; mso-font-signature:-1610612033 953122042 22 0 262159 0;} /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-unhide:no; mso-style-qformat:yes; mso-style-parent:""; margin:0cm; margin-bottom:.0001pt; text-align:justify; text-justify:inter-ideograph; mso-pagination:none; font-size:10.5pt; mso-bidi-font-size:11.0pt; font-family:等线; mso-ascii-font-family:等线; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:等线; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:等线; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-font-kerning:1.0pt;} .MsoChpDefault {mso-style-type:export-only; mso-default-props:yes; font-family:等线; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} /* Page Definitions */ @page {mso-page-border-surround-header:no; mso-page-border-surround-footer:no;} @page WordSection1 {size:595.3pt 841.9pt; margin:72.0pt 90.0pt 72.0pt 90.0pt; mso-header-margin:42.55pt; mso-footer-margin:49.6pt; mso-paper-source:0; layout-grid:15.6pt;} div.WordSection1 {page:WordSection1;} -->

反三角函数公式汇总,反三角函数重点知识点

  反三角函数是一类初等函数,指三角函数的反函数。反三角函数的图像和性质都是和三角函数相关的,下面将和大家分享一下小编整理的反三角函数公式汇总,希望能帮助同学们理解反三角函数相关内容。  反三角函数的定义  反三角函数指三角函数的反函数,包括反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,用“arc+函数名”的形式来表示。由于三角函数具有周期性,所以反三角函数是多值函数,为了得到单值对应的反三角函数,人们把全体实数分成许多区间,使每个区间内的每个有定义的y值有且只有一个确定的x值与之对应。  反正弦函数:正弦函数y=sinx在[-π/2,π/2]上的反函数,记作arcsinx,表示一个正弦值为x的角,x的取值范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。  反余弦函数:余弦函数y=cosx在[0,π]上的反函数,记作arccosx,表示一个余弦值为x的角,x的取值范围在[0,π]区间内。定义域[-1,1],值域[0,π]。  反正切函数:正切函数y=tanx在(-π/2,π/2)上的反函数,记作arctanx,表示一个正切值为x的角,x的取值范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。  反三角函数公式汇总  1、余角关系公式  arcsin(x)+arccos(x)=π/2  arctan(x)+arccot(x)=π/2  arcsec(x)+arccsc(x)=π/2  2、负数关系公式  arcsin(-x)=-arcsin(x)  arccos(-x)=π-arccos(x)  arctan(-x)=-arctan(x)  arccot(-x)=π-arccot(x)  arcsec(-x)=π-arcsec(x)  arcsec(-x)=-arcsec(x)  3、倒数关系公式  arcsin(1/x)=arccsc(x)  arccos(1/x)=arcsec(x)  arctan(1/x)=arccot(x)=π/2-arctan(x),(x&gt;0)  arccot(1/x)=arccot(x)=π/2-arccot(x),(x&gt;0)  arccot(1/x)=arctan(x)+π=3π/2-arccot(x),(x&lt;0)  arcsec(1/x)=arccos(x)  arccsc(1/x)=arcsin(x)  4、导数公式  d/dx(arcsinx)=1/√(1-x^2);x≠±1  d/dx(arccosx)=-[1/√(1-x^2)];x≠±1  d/dx(arctanx)=1/(1+x^2);x≠±i  d/dx(arccotx)=-[1/(1+x^2)];x≠±i  以上就是小编整理的反三角函数公式汇总,如果遇到不能解决的反三角函数难题,可以运用反函数的思维,从三角函数的角度入手会比较容易理解。

三角函数计算方法及公式,初中常用的三角函数公式

  三角函数计算方法及公式是许多初中生在学习数学时遇到的第一个难关,其实三角函数的含义比较简单,我们只要掌握其原理,学习起来就简单多了。下面分享三角函数计算方法及公式,以供大家参考。  三角函数的定义式  锐角三角函数公式:在直角三角形中,对∠α而言,有对边a、邻边b和斜边c,则有:  正弦公式:sinα=∠α的对边/斜边=a/c=y/r  余弦公式:cosα=∠α的邻边/斜边=b/c=x/r  正切公式:tanα=∠α的对边/∠α的邻边=a/b=y/x  余切公式:cotα=∠α的邻边/∠α的对边=b/a=x/y  三角函数计算方法  1、正弦:sinA=对边A/斜边C,对边A=斜边C*sinA,对边A=邻边B*tanA  2、余弦:cosA=邻边B/斜边C,邻边B=斜边C*cosA,邻边B=对边A/tanA  3、正切:tanA=对边A/邻边B,斜边C=对边A/sinA,斜边C=邻边B/cosA  三角函数计算方法及公式  1、两角和差公式  sin(α+β)=sinα·cosβ+cosα·sinβ;sin(α-β)=sinα·cosβ-cosα·sinβ  cos(α+β)=cosα·cosβ-sinα·sinβ;cos(α-β)=cosα·cosβ+sinα·sinβ  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)  2、倍角公式:  sin2a=2sina*cosa,cos2a=(cosa)²-(sina)²=2(cosa)²-1=1-2(sina)²,tan2a=2tana/[1-(tana)²]  sin(3a)=3sina-4(sina)³,cos(3a)=4(cosa)³-3cosa,tan(3a)=[3tana-(tana)³]/[1-3(tana)²]  3、积化和差公式:  sina*cosb=[sin(a+b)+sin(a-b)]/2,cosa*sinb=[sin(a+b)-sin(a-b)]/2  cosa*cosb=[cos(a+b)+cos(a-b)]/2,sina*sinb=[cos(a-b)-cos(a+b)]/2  4、和差化积公式:  sina+sinb=2sin[(a+b)/2]cos[(a-b)/2],sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]  cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2],cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]  5、三角函数万能公式:  sin(A)=[2tan(A/2)]/[1+tan2(A/2)]  cos(A)=[1-tan2(A/2)]/[1+tan2(A/2)]  tan(A)=[2tan(A/2)]/[1-tan2(A/2)]  这就是小编整理的三角函数计算方法及公式,围绕着三角函数有众多的知识点要记住,还经常和其他知识点融合在一起出题,因此同学们一定要学习好三角函数计算方法及公式,才能以不变应万变。  

三角函数和差化积公式口诀,常用三角函数公式有哪些

  三角函数是初中数学的重要考点之一,掌握这一知识点最重要的就是要熟记各种三角函数公式,那么接下来就跟着小编一起来学习一下三角函数和差化积公式口诀吧。  三角函数的定义式  在直角三角形中,对∠α而言,有对边a、邻边b和斜边c,则有:  正弦公式:sinα=∠α的对边/斜边=a/c=y/r  余弦公式:cosα=∠α的邻边/斜边=b/c=x/r  正切公式:tanα=∠α的对边/∠α的邻边=a/b=y/x  余切公式:cotα=∠α的邻边/∠α的对边=b/a=x/y  三角函数和差化积公式  正弦和化积公式:sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]  正弦差化积公式:sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]  余弦和化积公式:cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]  余弦差化积公式:cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]  正切和化积公式:tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  正切差化积公式:tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)  三角函数和差化积公式记忆口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦。  三角函数积化和差公式  sinAsinB=-[cos(A+B)-cos(A-B)]/2  cosAcosB=[cos(A+B)+cos(A-B)]/2  sinAcosB=[sin(A+B)+sin(A-B)]/2  cosAsinB=[sin(A+B)-sin(A-B)]/2  初中阶段常见的三角函数和差化积公式口诀已经为大家整理完毕了,希望大家要认真对待,仔细区分各个公式之间细微的区别,特别是加减符号,这是最容易出错的地方。掌握三角函数和差化积公式可以借助上述的口诀,但同时也建议大家多从习题中总结经验,印象会更深哦。
相关推荐

无理数集合符号表示方法,无理数的定义

反三角函数公式转化为三角函数应该怎么做